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Abstract
Dense systems of linear equations are quite common in many science and engineering
applications. Such linear systems place extreme storage and computational demands on computer
resources and, in many cases, may severely limit the subsequent analysis. A dense out-of-core
solver (DOCS) that operates on a partitioned coefficient matrix can reduce the in-core storage
requirements of the linear system while spreading the associated computational burden over
multiple processors (which reduces run time as well). In this report, I describe a DOCS that
operates on a partitioned coefficient matrix that may be distributed over multiple external storage
devices. I have implemented this solver using Message-Passing Interface (MPI) protocols. This
report presents performance data from a series of run time trials that compare the run time of both
sequential and parallel implementations of the DOCS.
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Summary
Dense systems of linear equations are common in many science and engineering applications.
Such linear systems place extreme storage and computational demands on computer resources
and, in many cases, may severely limit the subsequent analysis. A dense out-of-core solver
(DOCS) that operates on a partitioned coefficient matrix can reduce the in-core storage
requirements of the linear system while spreading the associated computational burden over
multiple processors (which reduces run time as well).

In this report, I describe a DOCS that operates on a partitioned coefficient matrix that may be
distributed over multiple external storage devices. I have implemented this solver using Message-
Passing Interface (MPI) protocols. This report also presents performance data from a series of run
time trials that compare the run time of both sequential and parallel implementations of the
DOCS.

Using the parallel version of the DOCS algorithm, the run time trials demonstrated nearly linear
speedup. This version of the algorithm, as currently implemented using MPI protocols, is suited
for a strictly parallel computing environment, but can be easily modified for use in a distributed
computing environment as well.

The author can be reached at celee@sandia.gov.
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Nomenclature

BSS backward solve sequence

DOCS dense out-of-core solver

EM electromagnetic

FSS forward solve sequence

I/O input/output

MPI Message-Passing Interface

RAM random access memory

RHS right-hand side
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A Dense Out-of-Core Solver (DOCS) for
Complex-Valued Linear Systems

Introduction
Dense linear systems result from a wide range of applications and especially those applications in
which all-pair interactions occur. Such linear systems are commonplace in problems involving
electromagnetic (EM) scattering in the presence of electrically large objects. In fact, the
popularity of asymptotic methods such as ray-based methods in EM analysis probably stems from
the demands that dense linear systems place on the analyst. Unfortunately, in electromagnetics,
there is a class of scattering problems for which asymptotic methods simply fail and one is forced
to consider more exact methodologies, such as those based upon Method-of-Moments [1, 2]. In
EM applications, moment method procedures generally yield dense and complex-valued linear
systems whose dimension is proportional to the electrical size of the source current support
region. Such linear systems place demands on the analyst that can quickly exceed available
computing resources. Subsequently, this particular area of EM analysis has always been
problematic for the analyst to deal with because it represents an area that requires both large
amounts of storage and significant computing resources.

The primary purpose of this report is to present a dense out-of-core solver (DOCS) for large
complex-valued linear systems of equations that would normally exceed the in-core capacity of
the more commonly configured workstation. In this regard, the DOCS provides a cost effective
means of extending the solution capability of a workstation that is already random access memory
(RAM) constrained. Secondly, to effectively solve the very large linear systems, a parallel
implementation of the DOCS algorithm is also now available (whose performance I will discuss
later in this report).

Performance benchmarks for the sequential implementation of DOCS have already been provided
in [3]. Consequently, this report will focus more on the parallel aspect of the DOCS. It will be
shown that the most computationally intensive portion of the DOCS falls into a category favoring
parallelization so that significant speedup is possible. However, simply applying multiple
processors to this problem does not guarantee that the added processors will be used efficiently.
Efficient use of this solver within a multiprocessor environment requires consideration be given to
the partitioning of the coefficient matrix. Fortunately, within the DOCS, there is a clear path
available for maintaining a reasonable level of load balance.

The following discussion presents the general problem and assumptions, describes the solution
approach with a more detailed definition of the out-of-core algorithm, provides a discussion of the
run time performance results, and examines the parallel performance of this algorithm. The
appendices include implementation-specific details (see Appendix A for File Name Convention
and Appendix B for Distributed Data Convention).
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Problem Description
The DOCS described here solves the following matrix equation:

BAX = Eqn 1

where A is the nn× coefficient matrix, B is the kn×  matrix of right-hand sides (RHS), and X is
the kn×  matrix of unknowns. Each of these matrices is assumed to be partitioned; that is, each
represents a matrix of submatrices. In this case, A is a matrix of mm× submatrices, and X and B
are each a matrix of 1×m submatrices. The coefficient matrix is assumed to be dense and can be
complex valued.

Approach
Implementation of the DOCS is modeled after that of a standard LU decomposition of A; see
[4,5] for an example. Consequently, the DOCS uses a two-step process that simultaneously
factors and solves Eqn 1. This process can be conceptually understood by considering Eqn 1 in
terms of two triangular systems, the first of which has the following form:

BLY = Eqn 2

where L is a lower triangular matrix.

The first step of the DOCS consists of a forward solve sequence (FSS ) of m stages as indicated
in Eqn 2. The ith forward solve stage begins by factoring the diagonal submatrix, Aii, into its Lii

and Uii components, solves for the submatrices below (Lji, i < j ≤ m) and to the right
(Uij, i < j ≤ m) of the diagonal submatrix, calculates the intermediate solution of Lii Yi  = Bi for the
corresponding partition, and updates the unused partitions in the RHS and coefficient matrices
before proceeding to the next submatrix on the diagonal. When all forward solve stages have been
completed, the matrices U and Y are stored on the disk as components of the second triangular
system given by

YUX = Eqn 3

The last step of the DOCS consists of a backward solve sequence (BSS) of m stages as indicated
in Eqn 3. The BSS is less complicated, but still involves a solve and update cycle similar to the
FSS described previously. Beginning with Umm, each matrix, Uii, and its corresponding RHS, Yi, is
used to solve for Xi, which is then used to update the RHS (Yj, 1 ≤ j < i) above the current row
partition. At the end of this solution process, both the coefficient matrix and the RHS matrix will
be overwritten.

Finally, it is also apparent that the overriding assumption in the implementation of the DOCS is
that at the ith forward solve stage, the diagonal submatrix Aii of the coefficient matrix must
possess a viable LU decomposition; otherwise, the process will fail.



 Page 3

The DOCS Algorithm
The DOCS algorithm is implemented using a sequence of fundamental operations that are
performed on the submatrices of A. The two most computationally intensive of these operations
are

• An LU decomposition Lii Uii  = Aii

• An outer product operation of the form Aij ←Aij − Lik Ukj

Of these two operations, the outer product is performed much more frequently than is the LU
decomposition, but can be optimized for a given host platform using compiler directives. The
other matrix operations that compose the DOCS are the forward solve, the transpose, and the
row permutation. Each of these matrix operations is apparent in the pseudo-code given here for
the DOCS.

(FSS : Each Stage is Indexed by i)

For i = 1 to m − 1

(Perform LU decomposition on Aii and calculate the ith intermediate solution.)

• Retrieve Aii and Bi from disk.

• Obtain Lii Uii = Aii and pi from the LU decomposition, where pi is the row permutation
vector.

• Permute Bi using pi and solve LiiYi = Bi for Yi.

• Bi ←Yi and Aii ← Lii Uii then write to disk.

(Solve Lii Uij= Aij for Uij where j = i + 1, ..., m)

For j = i + 1 to m

• Retrieve Aij from disk and permute using pi.

• Solve for Lii Uij= Aij for Uij.

• Aij ← Uij and write to disk.

End (j)

(Solve Lji Uii= Aji for Lji where j = i + 1, ..., m then update A and B)

For j = i +1 to m

• Retrieve Aji and Bj from disk.

• Solve Lji Uii= Aji for Lji.

• Bj ←Bj−LjiYi and write to disk.

• Update remainder of coefficient matrix.

For r = i +1 to m

• Retrieve Ajr and Uir from disk.

• Ajr ←Ajr−LjiUir and write to disk.
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End (r)

End (j)

End (i)

(FSS: i = m)

1. Retrieve Amm from disk.

2. Obtain LmmUmm = Amm and pm from the LU decomposition.

3. Permute Bm using pm and solve LmmYm = Bm for Ym.

4. Backsolve Umm Xm = Ym to obtain Xm.

5. Ym←Xm and write to disk.

6. Update Y.

For i = m − 1 to 1

• Retrieve Yi and Uim from disk.

• Yi ←Yi − U i mXm and write to disk.

End (i)

(BSS: Each Stage is Indexed by i)

For i = m − 1 to 1

1. Retrieve Uii and Yi from disk.

2. Solve U i iX i  = Yi for Xi.

3. Yi ←Xi on disk.

4. If i > 1 Then (Update Y)

For j = i − 1 to 1

• Retrieve Yj and U j i  from disk.

• Yj ← Yj− U j iX i  and write to disk.

End (j)

End If

End (i)

At the ith stage of the FSS, there is one LU decomposition, (m-i + 1) row permutations, (m-i)
transposes, 2(m-i) + 1 forward solves, and (m-i)2 + (m-i) outer products. At the ith stage of the
BSS, there is one backward solve operation and (m-i) outer product operations.
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It is apparent that the computational load of the DOCS algorithm decreases at each stage of the
FSS and at each stage of the BSS. Furthermore, the FSS is much more computationally intensive
than is the BSS. This behavior is illustrated in Figure 1 for an m = 20 partition of a coefficient
matrix of n = 4485 complex unknowns. The first 20 stages comprise the FSS and the last 20
stages comprise the BSS.

Figure 1 Single processor benchmark 1. Single processor run time results for a coefficient matrix
with n = 4485 complex unknowns, k = 180, and an m = 20 partition.

The previous discussion illustrates the main trait of any out-of-core solver; that is, reduce the
burden placed on the RAM at the expense of increased disk input/output (I/O) activity. On single-
processor platforms, this corresponds to an increase in solution time [3]. The amount of overhead
associated with disk I/O is proportional to the partitioning of the coefficient matrix; in other
words, as m increases, so does the disk I/O overhead. Even so, on a single-processor platform, it
is possible to minimize the solution time (within the context of the DOCS) by minimizing the
partition dimension for the available RAM on the host platform. This is illustrated in Figure 2,
where I used two different partitions (m = 4 and m = 20) for solving a series of linear systems.

Fortunately, the structure of the DOCS algorithm lends itself to the integration of parallel
constructs. By performing this integration, it is possible to more than offset the inherent increase
in disk I/O activity if there is sufficient communication bandwidth to the external disk drives.
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Figure 2 Single processor benchmark 2. Single processor run time results for k = 180 with m = 4
and m = 20 partitioning of the coefficient matrices.

Parallel Performance
I parallelized the DOCS algorithm using the Message-Passing Interface (MPI) [6]. In fact, I have
extensively tested the algorithm using two different implementations of MPI. I originally tested
with an MPI version called mpich, available from the World Wide Web. However, I generated all
the data presented here using the Silicon Graphics implementation.

The single most computationally intensive portion of the DOCS algorithm is associated with the
computation of the outer products in the early stages of the FSS (see Figure 1). Fortunately, this
set of operations can be performed in parallel at each stage of the FSS with a minimal amount of
interprocessor communications. Consequently, most of the run time improvement achieved
through parallelism will be realized at the early stages of the FSS. This result is shown in Figure 3,
which is the multiprocessor analog of Figure 1.

The ideal result from parallelizing the DOCS would be to allow a significant reduction in solution
time while simultaneously maintaining the load balance. This goal is difficult to achieve because
there is a relatively small sequential component within the algorithm. That is, all processors must
wait while the root processor computes a LU decomposition at the beginning of every forward
solve stage and while it executes a backward solve computation at the beginning of every
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backward solve stage. Furthermore, an MPI barrier command is needed to synchronize all the
processors before the coefficient matrix can be updated in the FSS.

Figure 3 Multiple processor benchmark 1. Run time results per stage for an m = 20 partitioning of a
coefficient matrix with n = 4485 complex unknowns, k = 180, parameterized by the number of
processors.

The following are a set of guidelines for maintaining the load balance at a reasonable level for the
DOCS:

• The number of processors, np, applied to the problem should satisfy np ≤ m

• Assign the first (m − 1) × (m − 1) submatrices of the coefficient matrix the same
dimension, s, such that the dimension, q (q ≤ s), of Amm is as close to s as possible
while maintaining (m − 1)s + q = n. The value of s that achieves this result is given by

 mns /=  where  x  denotes the ceiling function of x (the smallest integer larger

than x).

One difference between the sequential and parallel implementations is now obvious. By reducing
the partition dimension, one can effectively reduce the run time of the sequential implementation;
however, in the parallel implementation, this is undesirable. This is apparent, considering that by
increasing the partition dimension, the computational load (due primarily to the outer product
operation) can be distributed over many processors without significantly increasing the
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interprocessor communication burden. On the other hand, when np > m the problem cannot be
effectively parallelized. As Figure 4 shows, there would be little reduction in run time.

Figure 4 Multiple processor benchmark 2. Run time results for an m = 4 partitioning of the
coefficient matrices parameterized by the number of processors and k = 180.

By increasing the partition dimension, the problem can be distributed over many more processors,
and additional run time improvement is possible. In fact, as Figure 5 illustrates, nearly linear
speedup is possible when operating in the regime np ≤ m.

This approach to run time reduction cannot be continued without considering the effect it has on
the solution process. In fact, there is a limit above which m must not be increased. This is evident
by considering the fact that as m increases, the dimension of the submatrices of A decreases and
the quality of the pivot elements used in the LU decomposition of the Aii will be reduced,
ultimately leading to the failure of the solution process. There are no rules governing how large m
can become for a given coefficient matrix without resulting in a failure of the solution process, but
it must certainly depend on the structure of this matrix. In that regard, applying the DOCS to a
less-than-dense coefficient matrix should be done with a high degree of caution and certainly not
without preconditioning the coefficient matrix.
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Figure 5 Multiple processor benchmark 3. Run time results for an m = 20 partitioning of the
coefficient matrices parameterized by the number of processors and k = 180.

Finally, for analysis purposes, I have hosted the DOCS on a 4xR10000 Silicon Graphics
Origin200 system that was connected to a MegaDrive 8x18GB storage device (RAID level 0).
With this particular configuration, I can analyze complex linear systems up to 50,000 unknowns.
Figure 6 illustrates the run time performance that I have realized with this configuration.
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Figure 6 Multiple processor benchmark 4. Run time results for an m=20 partitioning of the
coefficient matrices with np=4.

Summary and Conclusions
Although there are many science and engineering applications that require such a capability,
solving large dense linear systems is a difficult and time-consuming task. It requires large amounts
of external storage space and (preferably) a multiprocessor computing environment. The primary
goal of the DOCS was to provide a cost-effective means of extending the solution capability of
workstations that are already RAM constrained. A subsequent goal was to provide a means of
effectively solving the very large dense linear systems (n ≥ 105). This latter class of problems
requires a multiprocessor computing environment connected to perhaps multiple sets of storage
devices through a high-bandwidth communication channel.

I demonstrated nearly linear speedup using the parallel version of the DOCS algorithm. This
version of the algorithm, as currently implemented using MPI protocols, is suited for a strictly
parallel computing environment, but can be easily modified for use in a distributed computing
environment as well.

I wrote the DOCS described here in Fortran 77; currently, both sequential and parallel versions of
the code are available. Both versions of the code allow the user to distribute the coefficient matrix
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and RHS data over up to four unique external disk drive systems. Either code will be available,
with all relevant routines and instructions on how to compile and run the code. The author can be
reached at celee@sandia.gov.
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APPENDIX A FILE NAME CONVENTION

The DOCS operates on a partitioned linear system whose data may be distributed over up to four
unique external disk drives. Every submatrix of this linear system, including those of the RHS
matrix, must be given a unique file name. If the prefix of the file name is fname, the convention
used in this implementation of the DOCS is as follows.

Input File Names

Submatrices of the coefficient matrix will be named with the file name extension _a.i, where i
designates a specific submatrix and is an integer such that 1 ≤ i ≤ m2. The assignment of these
extensions is from left to right and top to bottom. In this manner, A11 is identified by fname_a.1,
A12 by fname_a.2, A13 by fname_a.3,..., and Amm by fname_a. m2.

Submatrices of the RHS matrix are assumed to be named with the extension _b.j where j is an
integer such that 1 ≤ j ≤ m. The assignment of these extensions is from top to bottom. In this
manner, B1 is identified by fname_b.1, B2 by fname_b.2,.., and Bm  by fname _b.m.

Output File Names

Submatrices of the solution matrix will be named with the extension _x.j, where j is an integer
such that 1 ≤ j ≤ m. The assignment of these extensions is from top to bottom. In this manner, X1

is identified by fname_x.1, X2 by fname_x.2,..., and Xm by fname_x.m.

Intermediate File Names

There are a set of intermediate files (transparent to the user) associated with a permutation vector
generated by the LU decomposition of the diagonal submatrices, Ajj, which can be identified by
their file name extension _pvt.j, where j is an integer such that 1 ≤ j ≤ m.
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APPENDIX B DISTRIBUTED DATA CONVENTION

As mentioned previously, the submatrices of both the coefficient matrix and RHS matrix may be
distributed over up to four unique external disk drives. However, there is a specific rule that the
DOCS uses to determine the proper location of these submatrices. First, suppose the external disk
drives are denoted disk0, disk1, disk2, and disk3.

The submatrices of the coefficient matrix are assumed to be distributed according to the rule

 fname_a.i resides on diskj, where j satisfies the relation j = (i) mod 4.

Also, the submatrices of the RHS matrix are assumed to be distributed across this set of disk
drives in a similar manner. That is, fname_b.i resides on diskj, where j satisfies the relation j = (i)
mod 4.

Finally, the submatrices of the solution matrix will be distributed across the disk drives according
to the rule

fname_x.i resides on diskj, where j satisfies the relation j = (i) mod 4.
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